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1 Introduction

Relocalization is a computational method that estimates a position on a map using image data. Much like
a lost person in a shopping mall determines their location by comparing visible landmarks such as stores or
escalators with a floor map, relocalization determines the position and orientation of a camera by analyzing
visual features in the image and matching them to a known map. More formally, relocalization involves
the process of estimating the six degrees of freedom (6-DoF), including 3D position and orientation, of a
camera within a known map. To do this, feature extraction plays a central role: it involves identifying
distinctive patterns — such as corners, edges, or textures — within the image that can be reliably matched
to corresponding features in the map. This is a fundamental problem in robotics, augmented reality (AR),
autonomous vehicles, and computer vision.

Relocalization is essential for ensuring that localization systems remain robust and reliable, especially
under real-world conditions such as occlusion, motion blur, or changing environments. Its presence allows
devices to recover quickly from errors, maintain situational awareness, and continue operating safely and
effectively.

In recent years, it has also been used in technologies such as autonomous vehicles, drones, augmented
reality, and mixed reality. Therefore, improving matching accuracy and increasing computational speed have
become increasingly important. A concrete example of relocalization is the estimation of self-location by
autonomous mobile robots during navigation in environments where GPS is unavailable, allowing for more
accurate route recognition and movement.

In this project, we focus on a practical relocalization scenario involving autonomous mobile robots navi-
gating in environments where GPS signals are unavailable. Specifically, we consider the problem of estimating
the robot’s position by matching partial 3D shape data — represented as point clouds obtained from LiDAR
sensors — with a preconstructed global 3D map. Point clouds, formed by measuring the reflections of laser
beams, are inherently subject to occlusion, where parts of objects are hidden behind others. This means that
only incomplete views of the environment are typically available to the robot. Consequently, the relocaliza-
tion system must be robust to such occlusions, and capable of inferring the correct location from partial data.
Variation in lighting levels is still a difficult problem in the field of relocalization, especially with image data
input. Our project seeks to improve upon these weak points in large-scale indoor environments.

2 Background

First, we will establish some relevant vocabulary to understand the details of this paper. Then, we will briefly
explain some concepts and tools used in our approach.

1. Point cloud: A point cloud is a set of finitely many points in three-dimensional Euclidean space.
Together, they represent a surface of a three-dimensional object. Let P be a point cloud and

pP; = (xiayh Zi);

be a point in Cartesian coordinates. The point cloud is represented as P = {p;}Y;, where N is the
number of points in P [20].

2. RGB-D Image: Normally, images are represented using RGB, i.e. Red, Green, and Blue. Here our
images including depth data, so they are called an RGB-D image.

3. Localization and Relocalization: Localization refers to the general process of determining a device’s
position and orientation within a known map. In contrast, relocalization specifically denotes the ability
to recover this pose after it has been lost, such as during temporary sensor failure or when the system
is reinitialized. Figure 5 shows an example of what the relocalization pipeline may look like.

4. Pose estimation: refers to the process of estimating the six degrees of freedom (6-DoF) of a camera
or sensor. The degrees of freedom are the three-dimensional position and a 3D vector describing the
orientation.
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2.1 Feature Based Approaches

Many methods for relocalization make use of visual features, so it is worth taking the time to define them.
Broadly, visual features are any component of an image that can be used to identify objects or locations
within the image [29]. For example, corners could be used to identify a monitor, or a region of text might
identify a soda can. There are many categories of features, which have different constructions as well as
different strengths and challenges. Features that we are interested in are

e Local features: features that are extracted from a single pixel or a small collection of pixels within the
image.

e Global features: a way of quantifying the whole scene contained in an image. Often, global features
are made by aggregating local features.

e More Complex features: Some programs look for higher level features, such as semantic features.
Semantic features associate a descriptor to aspects of an image, and are often utilized in machine
learning contexts [18].

2.1.1 Feature Detection Criteria

In order to make use of features, we first need to detect them. There are a few key hypotheses that detected
features should satisfy [29]

e Distinctiveness: a key point/pixel should look very different from its neighbors,

e Invariance: similar images should produce similar feature,

Locality: local features should only depend on their close neighbors, not the image as a whole,

Quantity: a method for detecting local features should produce a sufficient number of features,

e Accuracy: the features should be appropriately localized to the area of interest they describe,

Efficiency: features should be easy enough to compute that they can be useful in more complex
algorithms.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning architectures that have demonstrated
strong performance on a wide range of computer vision tasks. They are specifically designed to exploit the
spatial structure of grid-like data such as images, enabling efficient learning of visual patterns through a
combination of local connectivity, parameter sharing, and hierarchical feature abstraction.

A convolution is a fundamental operation in CNNs in which a small matrix of learnable weights—referred
to as a filter or kernel—is applied across an input image or feature map to extract localized patterns. As shown
in the IBM schematic 1, the filter slides spatially over the input (a process called convolution), computing a
dot product between the filter weights and the corresponding input patch at each location. The result is a
new representation known as a feature map, which highlights the presence and spatial locations of features
such as edges, corners, or textures.

This operation enables CNNs to detect patterns independent of their exact position in the image, thereby
providing translation invariance. Additionally, because the same filter is reused across all spatial locations,
the number of parameters is greatly reduced, leading to efficient and scalable learning of hierarchical visual
features.

Core Architecture A typical CNN consists of the following components (see Figure 2):

e Convolutional Layers: These apply learnable filters to local regions of the input, producing feature
maps that highlight the presence of particular spatial patterns (e.g., edges, textures).
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e Activation Functions: Non-linear functions such as ReLU are applied to the feature maps to introduce
non-linearity, allowing the network to learn complex mappings.

e Pooling Layers: These reduce the spatial resolution of the feature maps, improving computational
efficiency and providing a degree of translation invariance.

e Fully Connected Layers: In classification-oriented CNNs, the final feature maps are flattened and
processed by fully connected layers to perform the final decision-making. In other applications such as
image retrieval or localization, these layers may be replaced by global pooling or aggregation modules.

Input image
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Output array
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=16
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Figure 1: Tllustration of a convolutional layer [11].

Advantages for Visual Recognition CNNs are particularly effective for visual recognition tasks due
to several key properties. They exploit local spatial coherence by applying filters to localized regions of the
input, allowing the network to detect low-level patterns such as edges and textures. The use of shared weights
across spatial locations significantly reduces the number of trainable parameters, improving generalization and
computational efficiency. Finally, CNNs naturally support hierarchical feature learning, whereby successive
layers capture increasingly abstract and semantically meaningful representations of the input data.

2.2 Local Features

In image recognition, local features refer to information that characterizes a specific region within an image.
These features play a crucial role in tasks such as object recognition, image matching, Simultaneous Local-
ization and Mapping (SLAM), and Structure from Motion (SfM). Therefore, local features are required to
be robust against changes in viewpoint, scale, partial occlusion, and illumination conditions.

In human vision, features are typically recognized not in flat regions but in parts of the image that exhibit
significant changes when slightly shifted—such as corners, boundaries, or areas with different lighting. The
goal is to replicate this form of perception computationally. In addition to detecting feature points, it
is also necessary to extract descriptors—quantities that describe the nature of these points—so that the
same features can be identified across different images. These descriptors are essential components in image
recognition.

The extraction of local features generally consists of two steps: feature point detection and subsequent
feature description. Feature points are locations that represent highly repeatable local structures in the image,
such as corners, boundary intersections, or highly textured regions. Typical detection methods include Harris
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Figure 2: Schematic overview of a typical CNN workflow for image recognition [22].

corner detection and Scale-Invariant Feature Transform (SIFT)[19], which is known for its scale invariance.
Depending on the context, such points may also be referred to as interest points or keypoints.

Once feature points are detected, descriptors are computed based on the local region surrounding each
point. A descriptor numerically represents patterns such as intensity variations or gradient information in the
neighborhood of the point, and is used for tasks such as matching corresponding points between images or
evaluating similarity. In addition to classical descriptors like SIFT, Speeded-Up Robust Features (SURF)[4]
and Binary Robust invariant scalable keypoints (BRISK)[16], recent methods such as Oriented FAST and
Rotated BRIEF (ORB)[26] and learning-based approaches like SuperPoint[8] have emerged. These integrate
detection and description into a single framework, enabling fast and robust feature extraction.

2.2.1 Scale-Invariant Feature Transform (SIFT)

To illustrate how local features are extracted, we present the Scale-Invariant Feature Transform (SIFT) as a
representative example. The purpose of this example is to demonstrate what a feature extraction framework
might look like.

SIFT works by first detecting points of interest within an image, then computing robust, unique features
at each of these points. To detect the points of interest, SIFT first computes Scale-Space extrema. Given an
input image I(x,y), the scale space of the image is defined to be

L(z,y,0) =G(z,y,0) *x I(z,y)

where G(z,y,0) is a Gaussian function with variance o, and * represents convolution. In essence, the
parameter o controls the level of image blur, and the scale space is all the blurred images stacked together. The
scale space can then be used to construct the difference-of-Gaussian function, which is an image representing
the difference between two layers in the scale space, explicitly:

D(x7y7 U) :L(l',y,ka') - L(LL’,y,O’)

for fixed k. These difference-of-Gaussian images also form a stack, and extrema are computed by finding
minimal or maximal pixel intensity compared to their 8 spatial neighbors, 9 upper space scale neighbors, and
9 lower space scale neighbors[19]. Figures 3 and 4 summarize this process.

Once the points of interest are selected, a filtering process is applied. First, a second order Taylor
approximation of D is fitted around each point, using pairwise differences between pixels to approximate the
first and second derivative terms. Then, the extremum of the approximation is calculated. If the extremum
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Figure 3: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce
the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to produce the
difference-of-Gaussian images on the right. After each octave, the Gaussian image is down-sampled by a
factor of 2, and the process repeated.[19]

Figure 4: Maxima and minima of the difference-of-Gaussian images are detected by comparing a pixel (marked
with X) to its 26 neighbors in 3 x 3 regions at the current and adjacent scales (marked with circles).[19]
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lies far enough away from the center of the pixel of interest (i.e. closer to a neighboring pixel), then the
neighboring pixel is selected instead, and the process repeated.

Certain points are less suited than others as key points, in particular points which are sensitive to noise.
Points with low contrast are an example, but this alone is not enough. Some edge points will also be sensitive
to noise, if the edge is poorly determined. However, these points will be detected as difference-of-Gaussian
extrema. To eleminate these points, the ratio of the principle local curvatures is calculated as follows:

1. An approximation to the 2x2 Hessian matrix is computed from differences of nearby pixels.
2. The trace and determinant of the Hessian are computed

3. The ratio of curvatures give an upper bound for the ratio of the trace to the determinant, so it is
sufficient to check if

Tr(H) (r+1)2
det(H) < (1)

to eliminate poorly localized points. Once the keypoints are selected, they are assigned an orientation. This
is done by computing the direction and magnitude of the gradient (approximated with pixel differences)
around each keypoint. Additionally, the direction and magnitude of all nearby points are also computed, and
these directions are added to a histogram weighted by the magnitude. This histogram can then be used to
ascribe a direction to the keypoint. If there are multiple peaks in the histogram (at least 80% the size of the
primary peak), then multiple directions are ascribed to the given keypoint[19].

The output of SIFT is a collection of keypoints, with orientations given to each key point. This algorithm
is fairly robust because the features defined at each key point are very distinctive, and allow for robust
matching of key points between frames.

This SIFT example highlights the complexity of local feature extraction. The benefits of these complex
methods is there ability to target specific mathematical descriptions of a local features. They are also typically
fast to compute, and do not require any known data to train with. The challenges of these methods is that
they are often sensitive to environmental variables (for example, lighting conditions). Additionally, they can
be sensitive to changes in the perspective of the camera.

2.2.2 SuperPoint

This section provides an overview of SuperPoint, a machine learning-based method for keypoint detection
and description. SuperPoint was developed by Magic Leap Inc. [8] and is designed to detect keypoints and
generate corresponding descriptors using a single deep neural network.

Unlike traditional handcrafted algorithms such as SIFT or ORB, which rely on manually designed features,
SuperPoint learns optimal features directly from data. This enables more adaptive and robust performance
in complex visual environments. One of its most notable characteristics is its use of self-supervised learning,
which allows the model to be trained on large amounts of unlabeled data without the need for manual
annotations.

Self-Supervised Learning Self-supervised learning is a training paradigm in which pseudo ground-truth
labels are generated automatically from the structure of the data itself. These pseudo-labels are then used to
supervise the learning process, mimicking conventional supervised learning without requiring human-labeled
data. SuperPoint adopts a two-stage self-supervised training strategy based on homographic transformations
and geometric consistency across image pairs. The overall procedure is as follows:

1. A CNN-based keypoint detector named “MagicPoint” is first trained on a synthetic dataset composed
of simple geometric shapes such as circles, lines, and corners. This dataset provides manually labeled
keypoints for initial supervised learning.

2. Preparing a large set of unlabeled real-world images. For each image, a random homography transfor-
mation is applied to generate a warped version of the image.
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3. MagicPoint is used to detect keypoints in the warped image. These detected keypoints are then mapped
back to the original image coordinates using the inverse homography. By applying this process across
multiple homographies, a heatmap representing pseudo ground truth keypoints is generated for each
original image.

4. Finally, the full SuperPoint network is trained using these pseudo-labeled image pairs. The model
jointly learns to detect keypoints and compute corresponding descriptors from real images—without
requiring manual annotations.

This approach exploits the geometric consistency of keypoints under homographic transformations, en-
abling large-scale training using only unlabeled data. It eliminates the need for labor-intensive annotation
while preserving the structure of supervised training through automatically generated labels.

Mathematical Formulation Let x denote the set (or heatmap) of detected keypoints, and let fy(-) be
the MagicPoint detector. For an input image I, keypoints are detected as:

x = fo(I) (2)

Let ‘H denote a homography transformation applied to the image. Then the transformed keypoints are
written as:

Hx (3)
The keypoints detected from the transformed image H(I) are:
Jo(H(I)) (4)
Ideally, these should match the transformed original keypoints, i.e.,
Hx = fo(H(I)) = x=H"fo(H(])) (5)

In practice, exact agreement is not guaranteed due to noise and model imperfections. To improve robust-
ness, multiple homographies H; are applied, and the results are averaged:

Np,

P fo) = - D M fol¥a(D) ()

This averaged output serves as a pseudo ground-truth heatmap for the original image and is used to
supervise the training of the SuperPoint model.

Performance and Comparison SuperPoint offers an excellent trade-off between accuracy and compu-
tational efficiency. While traditional methods like SIFT provide high precision, they are computationally
expensive due to operations such as scale-space construction and gradient histograms. ORB, by contrast, is
fast and lightweight but often less accurate and robust.

SuperPoint achieves real-time performance on VGA-resolution images when executed on a GPU, making
it particularly well-suited for applications such as visual SLAM and drone navigation where both speed and
robustness are critical. Compared to other learning-based methods like D2-Net or R2D2, SuperPoint is
relatively lightweight, reducing the computational burden for real-time deployment.

Nevertheless, several limitations exist. Because SuperPoint relies on a convolutional neural network, it
requires a GPU or similar computational resources—even during inference. Although the model is relatively
efficient, it is still more demanding than traditional methods such as ORB.

Additionally, in scenarios with extreme scale changes, SIF'T may offer more stable performance. In CPU-
only environments, the inference cost of SuperPoint can become a bottleneck. Furthermore, fine-tuning or
retraining the model requires expertise in deep learning.

Summary SuperPoint combines the benefits of self-supervised learning with high accuracy and low an-
notation costs. It is capable of real-time performance, maintains robustness under viewpoint variation, and
provides a practical and scalable solution for keypoint detection and description in computer vision applica-
tions.
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2.3 Global Features

In contrast to local features, a global feature represents the entire image as a single feature vector. Rather than
focusing on individual regions, global features summarize the overall statistical, structural, and visual prop-
erties of the image. This makes them especially suitable for tasks such as image retrieval and classification,
where measuring holistic similarity is crucial.

Typical examples of global features include color histograms, texture statistics computed over the whole
image, and shape or morphological descriptors. These representations provide a compact, quantifiable sum-
mary of the image’s overall appearance or structural layout.

In recent years, deep learning-based methods have been proposed that integrate both local feature extrac-
tion and aggregation into an end-to-end trainable framework. These methods offer improved representational
power and flexibility compared to traditional hand-crafted features. These models have demonstrated state-
of-the-art performance in image retrieval and classification tasks.

2.3.1 Bag-of-Visual-Words (BoVW)

The Bag-of-Visual-Word (BoVW) model [27] is a classical method for constructing global image representa-
tions. In this approach, local features such as SIFT are first extracted from an image and then quantized
into visual words using k-means clustering. The image is finally represented by a histogram that counts the
occurrences of these visual words.

2.3.2 NetVLAD

NetVLAD is a technique introduced in [3] that aggregates local features extracted by a CNN to form a
global representation, leveraging weakly supervised learning. Specifically, NetVLAD takes as input a set of
local descriptors obtained from intermediate CNN layers and outputs a single L?-normalized vector, serv-
ing as a compact and discriminative global feature. By combining these two learning-based components,
NetVLAD enables seamless end-to-end optimization and aims to achieve greater flexibility and robustness
than traditional hand-crafted global features.

Training Weak supervised learning is used to optimize the parameters of the NetVLAD layer, which is
based on the triplet loss framework. For a given query image ¢, collect a set of geographically close images
{pfl} (positive examples) and a set of geographically distant images {n{l} (negative examples). The loss
function is then defined as:

Lo = Zmax {Qm}nd%(q,pfl) — dZ(q,ng) + m} (7)
J

Here, 0 represents all trainable parameters within the NetVLAD layer, including the cluster centers and
aggregation coefficients. The term dy (q,pz) denotes the distance between the global features of the query
image ¢ and a positive image pl,, while dy(g, n}) denotes the distance to a negative image n. The scalar m
is a margin parameter.

Minimizing the loss Ly encourages the network to reduce the distance between the query and its closest
positive examples, while increasing the distance to negative examples. As a result, the model learns global
features that reflect spatial similarity and exhibit strong discriminative power.

Comparison Traditional approaches, such as the BoVW model, first extracts local features like SIFT from
the image and then applies k-means clustering to partition them into & groups. Each group is associated with
a cluster center (centroid). In the VLAD (Vector of Locally Aggregated Descriptors) method [14], global
features are formed by computing the residuals between local features and their corresponding cluster centers,
and then summing these residuals within each cluster.

NetVLAD generalizes this idea by optimizing the cluster centers and the assignment coefficients for
residual aggregation through a weakly supervised learning process based on triplet loss. For pretraining, the
dataset must include GPS or other location information associated with each image. The optimization goal

10
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is to make the global features of geographically close images similar, while those of distant images remain
dissimilar.

In our project pipeline, the Net VLAD architecture is trained through a weakly supervised learning process
using location information from the images that constitute the 3D map. After training, image retrieval is
performed against these reference images for a given query image.

2.4 Other Tools
2.4.1 Random Sample Consensus (RANSAC)

Random sample consensus (RANSAC) is an algorithm we use to deal with noisy data. RANSAC works
by randomly selecting a subset of our data, then fitting a model to the small subset. The fitted model is
then evaluated on the entire model, and inliers are determined by computing error for each data point and
comparing to a threshold. A parameter determines the number of inliers required to declare the model a
success (this could be something like 66% of the data). If the model is successful, all inliers are used to
compute an improved model, and error is calculated. If the new error is better than the previously reported
best error, the new model is accepted, otherwise it is rejected. We use RANSAC in multiple places to prevent
outier data from skewing our pose estimation.

First, four pairs of points are randomly selected from the matched feature points, and a projective trans-
formation (homography) that overlaps the two images is estimated based on them. Next, this transformation
is applied to all corresponding points, and a determination is made as to whether the deviation between the
transformed position and the actual corresponding point is within a given threshold (e.g. 5 pixels). Points
with small deviations are adopted as inliers, and points outside the threshold are removed as outliers. This
process is repeated multiple times, and the transformation that results in the greatest number of inliers is
ultimately adopted, eliminating false matches and extracting only reliable corresponding points. As for the
mechanism of RANSAC, this method is implemented by the findHomography function of OpenCV.

2.4.2 Kabsch

The Kabsch algorithm is a method used to compute the optimal rotation matrix that aligns two sets of
corresponding points in Euclidean space, typically in three dimensions. It minimizes the root mean square
deviation (RMSD) between the point sets by finding the rotation (and optionally a translation) that best
aligns them in a least-squares sense. The algorithm involves centering both point sets at their respective
centroids, computing the covariance matrix, and then performing singular value decomposition (SVD) to
extract the optimal rotation. The Kabsch algorithm is widely used in computer vision and structural biology,
particularly for tasks such as point cloud registration and pose estimation.

Algorithm 1 Kabsch Algorithm

Require: Two sets of corresponding points: P = {py,...,p,} and Q = {q1,...,qn}
Ensure: Optimal rotation matrix R minimizing RMSD between P and Q

1: Compute centroids p and g of P and Q

2: Center the points: p;, = p; — p and ¢; = ¢; — ¢ for all 4
3: Form centered matrices 15, Q

4: Compute covariance matrix: H = PTQ

5: Perform singular value decomposition: H = ULVT
6: if det(VUT) < 0 then

7: Set D = diag(1,1,—1)

8: else

9: Set D=1
10: end if
11: Compute optimal rotation: R = VDUT
12: Compute optimal translation: ¢t = —p + ¢

11
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Figure 5: Pipeline showing the stages of relocalization from query image to predicted pose.

This section describes our approach to achieving highly accurate relocalization. We implement the relocaliza-
tion process by breaking it down into several parts, and we call this series of steps a pipeline. See Figure 77.
The pipeline is as follows: First, global matching is performed to search for similar images in the dataset as
a map for the input image, roughly narrowing down the images. Next, local matching is performed to recog-
nize and identify the position of identical objects in the narrowed down images. The corresponding matching
information is projected onto a 3D point cloud created from the depth information, and the position in 3D
and the camera position, i.e., 6DoF, are estimated.

3.1 Global Matching

This section describes the method of global matching employed in the project’s processing pipeline. The
ultimate goal of this project is to estimate the 6-DoF parameters representing the position and orientation
of a robot. Prior to this estimation, however, it is necessary to narrow down candidate locations at a coarse
level—a task handled by global matching.

Specifically, this involves computing similarity between an image captured by a robot that has lost its
positional information and images stored in a database used for constructing a 3D map. Through this image
retrieval process, candidate locations that are visually similar to the query image are identified. In this
process, each image is represented by a global feature vector that captures its overall visual characteristics.
The similarity between images is then evaluated by computing distances between these vectors.

Accordingly, this section explains the construction of global features and the computation of distances
between them. In particular, we focus on the techniques designed to achieve relocalization that is robust to
changes in illumination.

3.1.1 Fusion of RGB and Depth Data

RGB data represents the color information captured by a camera. In the context of object recognition and
image retrieval, keypoints are typically extracted from regions exhibiting significant color variation, and the
surrounding information is analyzed to identify objects within the image. However, in indoor environments
where robots typically operate, lighting conditions are often suboptimal. As a result, captured images may
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be dark or have low contrast, making it difficult to accurately extract keypoints. This, in turn, can lead to
a significant decline in the accuracy of object recognition and image retrieval.

Depth data, by contrast, provides information about the distance between the camera and the objects in
the scene. Since it is less sensitive to variations in lighting, it is expected to serve as a more robust source of
information under challenging visual conditions. This project therefore aims to incorporate depth data into
the global matching process used in image retrieval, with the goal of achieving more reliable performance.

A related study on relocalization that employs a similar pipeline is presented in [31]. While that study
also performs global matching, it relies solely on RGB data. In contrast, the present work integrates depth
data from the global matching stage onward. This approach is expected to enable more robust image retrieval
and relocalization, particularly in environments with varying illumination, compared to existing RGB-only
methods.

Fusion in Convolutional Neural Networks (CNNs) can be categorized into early, middle, and late fusion,
depending on when different types of data are integrated during processing.

In early fusion, multiple modalities are concatenated at the input stage and processed as a single
input. This method is simple and computationally efficient, but it often fails to fully exploit the unique
characteristics of each modality. In middle fusion, each modality is first processed independently, and
then fused at intermediate layers of the CNN. Since features are partially extracted before integration, this
approach allows a more balanced and effective combination of modality-specific information. In late fusion,
each modality is processed independently until the final stages, and integration is performed at the level of
final features or predictions. While this method offers greater flexibility and robustness, it tends to incur
higher computational costs.

In this project, we aim to improve image retrieval performance by enabling a robot to flexibly determine
whether RGB or depth information is more reliable depending on the scene captured in the query image.
To this end, we adopt a late fusion approach, which is well-suited for such adaptive selection based on scene
conditions.

3.1.2 Global Feature Extraction

This section describes the method for extracting global features from RGB and depth data, as well as
computing similarity between images. The diagram below illustrates the overall process of feature extraction
for a query image ¢ and a dataset image j. Here, irgp and ipeptnh denote the RGB and depth data of image
i, respectively, while jrgp and jpepth represent the corresponding data for image j.

A key aspect of our approach is that RGB and depth data are processed using separate and
potentially specialized feature extraction pipelines, reflecting the distinct nature of these modalities.
Specifically, for the RGB inputs irgp and jrgp, we apply a combination of ResNet18 and NetVLAD to
obtain the global descriptors fi.., and fj..,. ResNetl8 is a convolutional neural network consisting of 18
layers based on residual learning. Despite its lightweight architecture, it effectively achieves high performance
while maintaining computational efficiency. This backbone was selected for our NetVLAD pipeline due to
its favorable trade-off between computational efficiency and representational power. As highlighted in the
benchmark study by Berton et al.[5], ResNet-based architectures remain competitive in visual geo-localization
tasks, and ResNet-18 in particular offers low inference latency while retaining sufficient depth to extract
semantically meaningful features. Chen et al.[6] further emphasize that lightweight backbones such as ResNet-
18 can serve as effective encoders when paired with strong aggregation modules like NetVLAD, particularly
in scenarios with limited computational resources. Additionally, recent work by Lee et al.[15] reinforces that
compact architectures like ResNet-18 are especially suitable for real-time or resource-constrained applications,
while still enabling meaningful descriptor learning in retrieval settings.

For the depth inputs ipepth and jpepth, We also employ a separate ResNetl8 + NetVLAD pipeline,
resulting in the global descriptors f;,. ., and fj, ... This modality-specific processing enables the network
to better capture the unique characteristics of RGB and depth information independently.

3.1.3 Weighted Function

This section describes a method to compute and integrate similarity (or distance) between images based on
global features extracted from both RGB and Depth data.
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Figure 6: An overview of the global feature extraction process from both RGB and depth data.

Let fipans fines denote the global features extracted from the RGB data of images ¢ and j, and fip_ s fipepn
the corresponding features from the Depth data. Then, the distance (or similarity) between the two images
is computed using the L? norm as follows:

SRGB(i7j) = HfiRGB - ijGB H ’ (8)
SDepth(ivj) = HfiDepth - ijepth (9)

To integrate the RGB and Depth-based scores, we define the final similarity score s(i,7) as a weighted
combination using a parameter « € [0, 1]:

s(4,7) = a - sreB(4,7) + (1 — @) - Speptn (i, J) (10)

In this report, we refer to this fusion of RGB data and depth data as Net-a-Fusion or Net-AF. In
the present study, the weighting parameter « was fixed to a constant value (e.g., « = 0.5) due to time and
implementation constraints. However, we consider that dynamically adapting « based on the input query
image would be a promising future direction.

Inspired by the approach in [7], which adaptively computes similarity measures according to the content of
the query image, we aim to develop a mechanism that learns a query-dependent weighting function o = a(q).
Such a function could determine the relative contribution of different modalities (e.g., RGB vs. depth)
depending on the visual characteristics or reliability of each input.

This extension would enhance the flexibility and robustness of the retrieval system, particularly in chal-
lenging scenarios such as varying illumination or sensor noise, where either RGB or depth information may
be less reliable. Future work will investigate training such a function using weakly supervised learning from
RGB-D datasets with pose annotations.

3.2 Local Matching

This section describes our implementation of local matching. To recognize corresponding objects between
two images, we extracted local features and performed matching based on their descriptors. We refer to the
process of extracting local features and identifying matching points using descriptors as local matching.
This allows us to locate the same object in both images being compared. When applied to image pairs
already filtered by global matching, local matching can be used to estimate the relative camera pose.

In this study, we employed two approaches for extracting and matching local features:

1. SIFT, a traditional hand-crafted method, along with its extension Affine SIFT (ASIFT)[30].
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2. SuperPoint[8], a deep learning-based method.

In both approaches, keypoints are detected in the input images, and descriptors are computed for these
keypoints. Feature correspondences are then established based on descriptor similarity, and corresponding
points are visualized by drawing lines between them. To further increase reliability, outliers in the matches
are removed using RANSAC.

In the following sections, we provide a more detailed explanation of the ASIFT and SuperPoint methods
used for local matching.

3.2.1 Handcrafted Method: ASIFT

In this study, we focused on SIFT as a method for feature extraction and local matching. SIFT is invari-
ant to image scale and rotation, and exhibits relative robustness to illumination changes and image noise.
These properties enable reliable feature detection and matching in applications such as scene recognition and
relocalization, which demand high robustness.

Other hand-crafted feature extraction methods—such as SURF, BRISK, and ORB—are also widely used,
each with its own trade-offs. For instance, SURF operates faster than SIFT but is restricted by patents, and
its matching accuracy may degrade under certain conditions. While BRISK and ORB offer computational
efficiency through binary descriptors, their feature representation accuracy tends to be slightly lower.

Based on these considerations, we implemented an image matching method using SIFT, emphasizing
accuracy and robustness. SIFT effectively extracts local features that are invariant to rotation and scale,
and has been widely applied to identify correspondences between images. However, SIF'T alone may struggle
with significant viewpoint variations, particularly those involving affine transformations due to large camera
angle changes.

To address this limitation, we adopted the approach of Affine SIFT (ASIFT), which applies multiple
affine transformations to the input image to simulate changes in viewpoint. SIFT-based matching is then
performed on each transformed image. This technique follows the method proposed in ASIFT[30], which
involves simulating all possible camera poses—especially the two degrees of freedom in viewpoint orienta-
tion—through image deformation. The implementation was carried out in Python using the OpenCV library.

The steps of our implementation are as follows:

1. Apply affine transformations to the comparison image to simulate various viewpoints (i.e., variations
in elevation and azimuth angles).

2. Extract SIFT features from both the target image and each transformed image, and perform feature
matching.

3. Evaluate the quality of each match (e.g., by the number or quality of matches) and select the transfor-
mation with the best result.

4. Visualize the matched keypoints for the optimal transformation, revert the transformed image to its
original state, and display the corresponding points on the original image.

To further improve the reliability of the correspondences, we applied geometric outlier rejection using
RANSAC based on epipolar constraints.

3.2.2 Learning-Based Method: SuperPoint

In this study, we conducted experiments on keypoint extraction using a publicly available PyTorch imple-
mentation of SuperPoint[12]. This implementation is based on the original SuperPoint framework|[8] and
its subsequent improvement[13]. Specifically, we used a pretrained SuperPoint model trained on the COCO
dataset[17] to extract keypoints and their corresponding descriptors from input images.

The model was applied to a pair of images taken from different viewpoints. Keypoints and descriptors
were extracted independently from each image, and feature point correspondences were obtained through
descriptor matching. The resulting matches were visualized to qualitatively evaluate the consistency of
detected keypoints across different views. Both keypoints and descriptors were visualized, and the detection
performance was evaluated qualitatively through visual inspection.
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Summary of Local Matching

ASIFT is a handcrafted method, which makes its internal mechanisms transparent and its behavior
relatively easy to interpret. It is generally capable of detecting features that are also distinguishable by
human observers. However, it is computationally intensive, as it requires feature comparison at each image
transformation. On the other hand, SuperPoint is a machine learning-based approach that allows for rapid
image comparison once training is complete. Nevertheless, as with many learning-based methods, the feature
detection process tends to function as a ”black box,” making it less interpretable. Considering the respective
advantages and limitations of these methods, we employed both in our experiments. Specifically, we applied
global matching to narrow down candidate image pairs, followed by local matching using either ASIFT or
SuperPoint. Note that both SIFT and SuperPoint assume grayscale input images.

3.3 2D to 3D Projection

Local features extracted from a 2D image were projected onto a depth image, and the corresponding points
were also projected onto a point cloud generated from the depth information.

First, local features were extracted from a normal 2D image. The same points were projected onto an
image representing depth information. Figure 7 is an example.

Figure 7: The image on the left is a normal 2D image. Note that the local feature extraction method we
used assumes a grayscale image, but here it is colored for visibility. The image on the right is an image that
expresses depth information. The closer the object is, the blacker it is, and the further back it is, the whiter
it is.

This allowed us to assign features and descriptors corresponding to each depth point. We then used this to
map the same points onto the 3D point cloud data. See Figure 8. Now the point cloud has the same feature

Figure 8: Pink points are same feature points as the normal one.

points assigned to it, which will be used to estimate the camera position.
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Figure 9: Cartoon depicting the pinhole camera model. Source: Wikipedia
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Figure 10: Diagram showing the geometry of a pinhole camera image. Source: Wikipedia

3.4 Depth to Point Cloud

RGB-D data is inherently three dimensional, and we exploit that by constructing explicit point clouds from
the depth data of our images. A useful simplified model for doing this is the pinhole camera model (see figure
9). The pinhole camera model assumes that all light rays from the image are focused through a single point
before reaching the detector (which detects a scaled, flipped version of the image). The distance from the
detector to the lens is known as the focal length, and the angle of the light cone is know as the field-of-view
or FOV. These values are intrinsic to the camera, and must be known to use this model [10].

To reconstruct the original image from the picture is actually just a trigonometry problem. In fig 10, we
can see that 6 is the same for both the detected image and the original scene. The distance from the lens to
the detector is the focal length f, and so we can derive 6 as

6 = arctan (_Tyl) . (11)

Then, using the fact that that distance d from the point in the original image to the lens is the value recorded
in the depth data, we get that

x1 =dtan(h), (12)
- _‘?d. (13)

A similar calculation allows us to determine x5, and we set 3 = d, thus achieving a 3D representation of
each pixel in our depth image.
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3.5 Camera Pose Estimation

To estimate our camera pose, we use the fact that we have 3D matched keypoints allows us to reformulate
the problem as follows: given two collections of 3D points K = {kj,ka,...,k,} and K’ = {k},k),....k,},
compute the rotation matrix R and translation vector t that minimizes

n

D IRk + t) = ki[5 (14)

i=1

A standard method for doing this is the Kabsch algorithm [2]. In particular, the Kabsch algorithm allows
us to match a few correlated points, rather than trying to align whole point clouds. One known weakness,
however, is that Kabsch can be susceptible to noise of depth data. To remedy this, we also employ a RANSAC
algorithm when computing R. This allows us to fit an accurate rigid transform to the data, without being
skewed by high noise points.

4 Experiments

4.1 Data & Preprocessing

To evaluate our method, we utilize the Standford 2D-3D-Semantics dataset (2D-3D-S). This dataset offers a
large-scale, diverse, and realistic environment with ground truth data for testing. We used the Area3 subset
of 2D-3D-S. We chose to work with this dataset because it is a large collection of interior RGB-D data, with
some variance in shadows and lighting conditions.

We split the dataset into subsets called ”train” and ”query” with 80% and 20% of the data, respectively.
Each subset contains RGB, depth, and ground truth pose data. The depth data had to be preprocessed to
purge any unrealistic values that could interfere with good training. For triplet loss training, we performed
triplet mining by using the ground truth pose data to find the distances between all images. For all images,
called anchors, we find good positives and negatives determined by how spatially close or far other images
are to the anchor. The threshold values were chosen such that we would get sufficient matches for positives
and negatives which are 0.5 meters and 10.0 meters, respectively, storing the top ten negatives. This triplet
mining was performed for both the RGB and preprocessed depth data.

To make the dataset better for testing lighting variance, we also artificially modified the data. We chose
to leave 40% of the data unmodified, and the remaining 60% are assigned a random brightness value from
0.4 to 1.0, and a random gamma value from 0.6 to 1.4. We then choose whether to adjust the color of the
image uniformly at random. We either do not modify the color, make the color warm, or make the color
cool. We adjust the image color using the cv2.addWeighted function. This lighting modified data was used
only for testing, not training, due to time constraints.

4.2 Training

As discussed before, we trained NetVLAD with each modality (RGB and depth) separately using a triplet
loss function [23]. We loaded NetVLAD with the ResNet18 backbone and its pretrained weights. The data is
transformed into 224 by 224 images then loaded into ResNet18+NetVLAD. NetVLAD has 64 clusters, batch
size 32 for 10 epochs with a triplet loss margin of 0.7 using the L2 norm. Gradient descent is performed with
Adam and a learning rate of le-4.

4.3 Results

We performed several experiments to validate the methods we used in this project. We did small scale
experimentation to evaluate each component individually, then performed large scale tests on the full pipeline.

4.3.1 Local Matching

First, we conducted some experimentation to validate each component of our method. For local matching,
we conducted small scale experiments where the position, camera angle, and illumination of various objects
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were adjusted, and then tried to use ASIFT and SuperPoint to match features between the two objects.
Figure 11a is an example result of one such experiment.

See Figure 11a, which shows the successful identification of identical objects in the image.

We performed matching between two images using the descriptors obtained by SuperPoint, and some
results are shown in Figure 11b.

(a) The matched points are connected by lines. The first (b) The matched points are connected by lines. The first

image shows the same object but at different sizes on the image shows the same object but at different sizes on the
screen. The second image shows matching when a similar screen. The second image shows matching when a similar
object is present on the screen. The third image com- object is present on the screen. The third image com-
pares images taken under different lighting conditions. pares images taken under different lighting conditions.

Here are some comments.

e Successfully identifies identical objects within an image.

e Matches well even when objects of different sizes or similar objects are included.
e No problems with images under different lighting conditions.

Note that extracting too many feature points does not necessarily improve accuracy. What is important is
that highly discriminative feature points are appropriately distributed throughout the image. Redundant and
weak feature points can cause computational overhead and false positives. SIFT is a conservative design that
returns a small number of carefully selected, high-quality points. SuperPoint returns dense points through
training, but redundancy is suppressed. Superiority should be determined not by the score, but by matching
accuracy and suitability for downstream tasks.

4.3.2 Pose Estimation

To validate pose estimation, we performed experiments where we convert two nearby images to point clouds,
align them, and then compare the predicted 6DoF to the ground truth. Based on a number of small tests,
we determined our pose estimation is effective in situations where a sufficient number of good feature points
are matched between the two images.

4.3.3 Pipeline

In order to validate our full method, we conducted several large-scale tests on the Stanford 2D /3D /Semantics
dataset area 3. We also performed tests on the illumination modified dataset, denoted (IM). We tested our
entire pipeline with different module configurations, specifically using a pretrained NetVLAD checkpoint +
ASIFT, and checkpoint + SuperPoint. We also trained NetVLAD on area 3 using RGB and Depth, then
tested our weights with the following configurations:
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Configuration Dataset | Translation success (%) | Rotation Success (%) | Full Success (%)
Base NetVLAD + ASIFT area 3 97.15 86.92 86.16
Base NetVLAD + SuperPoint area 3 95.17 86.69 84.75
Trained Net-AF + SuperPoint area 3 6.76 23.31 6.76
Base NetVLAD + SuperPoint IM area 3 23.81 81.72 23.81
Untrained Net-AF + SuperPoint | IM area 3 23.17 75.18 23.11

Table 1: Table showing the results of several large scale experiments on the Stanford 2D/3D/S dataset. IM
means the data was artificially modified to have illumination variance. Translation success means within
5cm of true position. Rotation success means within 5° of true rotation. Full success means both are true
simultaneously.

1. « fusion + ASIFT,

2. « fusion 4+ SuperPoint,

3. RGB only NetVLAD + ASIFT,

4. RGB only NetVLAD + SuperPoint.

Our results are summarized in table 1. We used the ground truth 6DoF data to validate our pose
estimation. We count a pose estimation as successful if the estimated location is less than 5cm (0.05m) off
from the ground truth location and the estimated camera direction is less than 5° off from the ground truth
camera direction.

These results show that our pipeline shows good accuracy for well illuminated images, but poor accuracy
for dark images. A likely cause of this is the fact that SuperPoint is not trained on our data, so it cannot
match features well with large lighting changes. A goal for future work would be to train SuperPoint to
recognize similar features in different illumination conditions.

5 Conclusion

The point of this project was to develop a novel method for relocalization that is robust to lighting changes.
Although we were unable to achieve state of the art accuracy, we still learned several valuable lessons about
relocalization that can hopefully be of use in the future.

RGB-D data is likely to become much more common in the next few years, do to the rise in LiDAR
sensors on modern smart phones. While this data makes it easier to extract 3D information (such as camera
6DoF), the quality of information is subject to the quality of the RGB-D data. Camera phones and tablets
are not highly sensitive tools for measuring, and we found that often it was difficult to validate the ground
truth of such images for training and validation. The lesson we learned here is that, depending on what type
of sensor is used, data processing and cleaning may be more impactful towards improving accuracy than
using more advanced tools.

We also learned that machine learning based methods require careful training. We tried multiple times to
train NetVLAD on area 3, and found that without properly processing our data the results were not good.
We learned that properly choosing parameters for training a neural network is a difficult task, and requires
substantial time to determine.

In the end, we are not computer scientists, nor machine learning experts, and though this hampered our
ability to complete this task, we still hope our proposed method can be useful as a starting point for future
work. To achieve accurate and robust relocalization is a very difficult problem, but one that is nonetheless
very important to explore. We appreciate all the support this program has provided for doing just that.

20



Page 21 of 26 G-RIPS Sendai 2025, RGB-D Relocalization

6 Future Work

6.1 Local Matching
6.1.1 For Extremely Distorted Images

The method we adopted is robust enough to handle some degree of viewpoint changes. However, this is
not the case with extremely distorted images, and there are cases where objects that appear to the human
eye are not detected properly. In images like the one shown in Figure 12, neither ASIFT nor SuperPoint
were able to match properly (Figure 13).

Figure 12: Example of distorted images. In this case, the first photograph was taken from an extreme angle.

Figure 13: Fail to match. Upper is conducted by ASIFT, Lower is conducted by SuperPoint.

However, instead of directly comparing the images, we were able to detect the same object by first
matching it via a slightly closer image. This was successful for both ASIFT and SuperPoint, as shown in
Figure 14,15. Looking at these results, it seems possible to deal with even extreme distortions if an algorithm
can be constructed that automatically selects the image to be used when a successful match is not made,
and then performs matching again to identify the same object.

6.1.2 For Color Information

In this study, we conducted local matching experiments using feature extraction algorithms such as SIFT
and SuperPoint, which assume grayscale images as input. These methods are specialized in detecting local
structures based on intensity gradients and are highly robust to variations in illumination and instability in
color spaces. Therefore, they were appropriate choices for our experiments. On the other hand, it has been
pointed out that color information—such as hue and saturation—can contribute to distinguishing objects
that are difficult to differentiate based on shape information alone, and can be effective in specific application
domains. As a future work, it would be meaningful to conduct comparative experiments using color-based
descriptors, such as Color SIFT (CSIFT)[1], or learning-based methods that directly handle color images,
in order to evaluate their impact on the discriminative power and matching performance of local features.
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Figure 14: ASIFT Figure 15: SuperPoint

6.1.3 SuperPoint with Depth

It is conceivable that training SuperPoint using depth images could enable more direct extraction of local
features that incorporate depth information. Currently, SuperPoint is trained on standard image datasets,
and therefore, applying it to depth images does not necessarily guarantee the extraction of meaningful
features. However, SuperPoint is capable of being trained through self-supervised learning, which allows the
use of unlabeled images during training. Given this characteristic, we consider it valuable to train SuperPoint
using depth images generated from the depth data we have acquired. This approach has the potential to
enhance the model’s ability to extract depth-aware features suitable for our target environments.

It is conceivable that training SuperPoint on depth images could enable more direct extraction of local
features that incorporate depth information. Currently, SuperPoint is trained on standard image datasets;
therefore, applying it to depth images does not necessarily guarantee the extraction of meaningful features.
However, SuperPoint supports self-supervised learning, which allows it to be trained using unlabeled images.
Given this characteristic, we consider it valuable to train SuperPoint on depth images generated from the
depth data we have collected. Such an approach has the potential to enhance the model’s ability to extract
depth-aware features tailored to our target environments.

6.2 Dynamically determined o

In this project, global matching is performed by combining the similarity scores between global features
extracted from RGB data and those from Depth data using a weighted sum, where the weight is determined
by a constant parameter a. The primary goal of this project is to achieve indoor relocalization that is robust
to variations in lighting conditions. In indoor environments, accurately capturing the semantic content
of objects is essential. For example, objects such as ”spoons” and ”forks” may have similar shapes but
differ in meaning. To distinguish between such objects, semantic information—such as color and texture—is
particularly important, and RGB data is more effective than Depth data in capturing such information.

However, in low-light conditions, it becomes difficult to extract sufficient features from RGB data alone.
In contrast, Depth data can be acquired independently of lighting conditions, and is therefore expected to
provide stable performance even when the query image lacks adequate illumination. Consequently, under the
assumption that lighting conditions may vary, it is important to combine RGB and Depth data appropriately.
In particular, it is desirable for the parameter o to adapt dynamically depending on the characteristics of
the query image.

As future work, we plan to learn « as a function of the visual properties (e.g., brightness and contrast)
of the query image. To achieve this, we intend to utilize a dataset that satisfies the following conditions:

e RGB-D images captured in indoor environments,
e Associated 6DoF camera pose information for each image,
e For each scene, images captured at different times of day (e.g., day and night).

Using such a dataset, we aim to learn a mapping from the visual conditions of the query image to the optimal
« value using a method based on the triplet loss framework.
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6.3 Training

Given the limited time available for training and our relative inexperience, we have identified several avenues
for improving the training process in future iterations. Optimizing the existing codebase for faster execution
and introducing parallelization strategies would substantially enhance computational efficiency. As noted
by Chen et al.[6], increasing the descriptor dimensionality to 1024—particularly when using deeper back-
bones such as ResNet-50, ResNet-101, or VGG—can lead to significant improvements in retrieval accuracy.
Additionally, Patel et al.[24] demonstrate that employing substantially larger batch sizes during training
contributes to superior performance, particularly in triplet-based metric learning. It would also be valu-
able to experiment with higher input resolutions, such as 480x480 or 640x480, in order to better preserve
fine-grained visual details. However, the increased memory requirements associated with such configurations
currently exceed the computational resources available to us during this project.

6.4 How to handle depth data
6.4.1 Adding Edge Information

In this project, depth data was initially processed using a single-channel CNN. However, further performance
improvement may be achieved by additionally incorporating edge information extracted from the depth data
as input to the network. Edge information, in this context, refers to regions in an image where abrupt changes
in intensity or brightness occur—typically corresponding to object boundaries and contours. Such information
can also be derived from depth data. In a previous study aiming to improve the accuracy of fingertip detection
by combining RGB and depth data [9], it was demonstrated that incorporating edge information, in addition
to depth data, into the CNN led to significantly better detection performance compared to conventional
methods.

6.4.2 PointNetVLAD

In the global matching stage of this project, depth data are directly input into the CNN and NetVLAD
modules. However, CNNs are primarily designed for processing image data with a regular 2D grid structure,
making it challenging to effectively extract spatial and geometric information from data with inherently
three-dimensional structures, such as depth maps. Moreover, RGB and depth images differ significantly in
their data characteristics. In RGB images, each pixel represents color intensity, and adjacent pixels exhibit
strong visual continuity, which CNNs can exploit to learn meaningful features. In contrast, in depth images,
each pixel encodes the distance to the observed object. Depth values tend to be discontinuous at object
boundaries and are more susceptible to noise and missing data, which can hinder the learning capability of
CNNs.

To better handle 3D structural information such as depth data, a method known as PointNetVLAD [28]
has been proposed. This approach combines PointNet, which extracts local features directly from 3D point
clouds, with NetVLAD, which aggregates these features into a global descriptor. Given that the input to our
system includes RGB-D images, it is reasonable to expect that converting the depth images into 3D point
clouds using models such as the pinhole camera model, and then feeding them into the PointNetVLAD archi-
tecture, would yield global features that more effectively capture the underlying three-dimensional structure
of the scene.

6.5 Other ideas

6.5.1 Light invariant grayscale

If properties about the camera sensor and light type are known, it may be possible to remove illumination
variance from an image [21]. This could be useful as a preprocessing step before local feature matching. The
challenge here is to know the type of light the robot will see. This paper [21] assumes sunlight, and produces
a simplified model based on the properties of sunlight. Interior lights may have different properties, and this
may change the model. Some knowledge of optics and physics would be useful to progress this idea.
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6.5.2 Geodesic-aware

Geodesic-Aware Local Feature[25] proposes utilizing depth information to measure geodesic curves on an
object’s surface, which are then employed as robust local features. This approach enables the identification
of even non-rigid objects across various transformations.

7 Contributions

7.1 Sam Scheuerman

I was the project manager, and worked with each group member to divide up research. I also made sure
that everyone else’s code could work together, and built the framework to run the full pipeline. I also set up
the large scale tests we ran on the pipeline. In addition, I worked on the 3D projection and alignment portions
of the pipeline, writing code to allow us to convert depth data to 3D pointclouds and align pointclouds using
the Kabsch algorithm and RANSAC.

7.2 Ikkei Sato

I proposed a novel late-fusion method (Net-AF) for combining RGB and Depth features in relocalization,
mathematically formulating the approach to guide implementation, and also conducted a review of existing
RGB-Depth multimodal fusion literature.

7.3 Keigo Horikoshi

I have implemented local matching for 2D images. In particular, I contributed to the team by building
ASIFT and introducing SuperPoint. In both methods, I have written the python code to extract local feature
points and descriptors to detect identical objects in the images.

7.4 Zach Fendler

I led the machine learning component of the project, conducting an extensive literature review on state-
of-the-art methods, later supported by Ikkei. I was responsible for implementing the NetVLAD architecture
and implementing the initial framework for our proposed method, Net-AF. Additionally, I developed and
tested several foundational concepts that informed the current design of the system.
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